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ABSTRACT 

     Research on discrete problems depends on mathematical models. Multilayer feed 

forward neural network is one of the computational mathematical models that can be 

performed as a linear or non-linear equation within the problems. The proposed method is a 

mathematical approach that develops Multilayer feed forward neural network with back-

propagation under the learning rate influenced by sum of absolute error to overcome from 

complexity of a conventional model. The proposed model applied to predict refractive index 

for binary mixtures of ionic liquids with solvent water or ethanol and obtained results are 

compared with existing results. 
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INTRODUCTION 

     The conventional back-propagation (BPN) algorithm is an innovative method [1, 

4, 7] for training the Multilayer feed forward neural network (MLFFN).  Researchers [9, 10] 

still investigate the training skill required by BPN due to their longer time of convergence. 

These issues are addressed through an innovative methodological alternative that rejects the 

options of local minima with the choice of learning rate and learning momentum [1, 7]. [2] 

proposes the method to initialize the components of weight vectors that involved in feed 

forward neural network (FNN ). This method increases the rate of convergence of FNN by 

determining the output value of each neuron in the active region. An adaptive learning rate 

for BPN algorithm defined in [ 6 ] and [ 8 ]. The learning rate is adjusted with condition 

based on error measured on validation set in [ 8 ] whereas [6] defines the learning rate as the 

derivative of the sigmoidal value of the error of the layer. 
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     An MLFFN with BPN needs a set of mathematical techniques that exploring a successful 

learning model from the given problem. Section 2 discusses the proposed techniques. 

Application of the proposed model on theoretical prediction of refractive examined in section 3.  

 

1  Mathematical approach  

     In order to improve the performance of conventional MLFFN with BPN method, the 

objectives of this section are pre – process for designing the problems, controlling the internal 

representation of MLFFN and post – process that provides information for BPN whether 

MLFFN learning or stop the learning by analytical method. 
 

2.1      Designing the problem 

     Designing the problem aims the discrete patterns into normalization and categorization in 

order to form a set within the range of learning. 
 

2.1.1 Normalizing  

     Scaling the environment and observation to fall within a specified range [1] is known as 

normalization. In order to normalize the components of input patterns of the environment and 

output patterns of their corresponding observation, the real world problem can be arranged as: 

for a finite positive integer P, there is a couple of sets of input patterns and  

of their corresponding output patterns whose elements are xp and dp respectively. Such that 

the set of discrete examples can be defined as p = {(xp, dp) / p = 1, 2, 3, …, P } and    be 

defined as the set of ith component in xp or in dp for every p then the normalizer of p is 

defined by a function f :   → (0, 1) such that   for   

2.1.2 Categorization 

     Real world examples are mostly in the form of discrete values, it is must to categorize the 

normalized values to perform MLFFN with BPN [1]. The set of normalized examples 

categorized into two subsets as follows: It is possible to choose an element c  , the set of 

positive real number, the training set X = {(xp, dp) /   p = 1, 2, 3, …, P} can be defined as a 

subset of the set of normalized examples such that for u  v, any pair of elements (xu, du) (xv, 

dv) in X satisfy the condition  and the testing set {(xp, dp) /   p 

= P+1, P+2, …, P } can be defined as a subset of the set of normalized examples such that for 
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any element (xu, yu) in that set satisfies the condition  for 

atleast one element  (xv, dv) in X 

      Categorization of two classes explores that the elements of testing set are a neighborhood 

of atleast one element of training set so that the trained MLFFN avoids over fitting or under 

fitting the values in the testing set. 
 

2.2 Controlling the internal representation of MLFF 

     Internal representation (IR) of an MLFFN is an activity of formally presenting the 

accumulated information by BPN from the range of given problem to MLFFN. Controlling 

the IR consists of mapping representation and improving the performance of BPN 
 

2.2.1 Mapping representation  

    An MLFFN is a group of artificial neurons where each artificial neuron receives input 

vector from previous neurons and transforms them as an output [3]. Mathematical model of 

any neuron (fig.1) represents its input and output as a linear combination  of an input 

vector  together with weight vector  and 

activated value [1, 4, 7]  of   i.e., , respectively,  where  

  and   .  
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Fig.1: Artificial neuron 

     The slope of  is atmost parallel to  axis and least at every point of the intervals 

 and , initial learning of MLFFN gets slow. It is important to initializing 

some neurons in which          [-3.4, 3.4]. For g = 6.8 and , evidently  

PC2 distinct terms  satisfy     

By Cauchy- Schwarz inequality, 

  

For ,               
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and any real number r > 1, choice of weight vector satisfies the conditions 

 and     

explores that  

This procedure is common for all neurons in MLFFN. It explores that an analytical 

presentation to initialize all weight vectors corresponding to their input vectors determines 

the MLFFN architecture in the form of mapping or function and is known as mapping 

representation. The main object of mapping representation is that MLFFN can produce the 

output value within the interval of target outputs. 
 

2.2.2 Mathematical model of MLFFN  

     Let  be a compact subset of  whose elements are normalized input patterns and  

be a compact subset of . The mathematical model of MLFFN with one hidden layer 

and proposed weigh components is a function N: →  such that the output value produced 

by MLFFN is defined as  for p = 1, 2, 3, …, P 

 

2.2.3 Error 

     Let D be a compact subset of  whose elements  are actual 

output pattern corresponding to an input pattern xp. Since an initial weight vector  in  

is set at random, MLFFN’s output value  may not equal to dp. Therefore an error function 

of continuous weight vector  is defined as a sum of mean square value [3] of residues 

  for all k and p. 

i.e.,  

2.2.4 Training or learning  

     Learning [1, 7] is a process by which all weight components of  in MLFFN are updated 

and MLFFN is embedded to minimizing the error function .  

 

2.2.5 Back propagation  

     In 1986, Rumelhart [4] showed that  can be minimized by updating weight 

components w of . General model is to update weight components in the opposite direction 

of . This learning law is called Backpropagation algorithm which is a supervised 

training algorithm for MLFFN with online training. In this training, all weight components 
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involved in MLFFN are updated by presenting input pattern and its corresponding output 

pattern one after one. An error function of  is defined as  

 

For all proposed initialized weight components w(0), the weight updated rule for this model 

is formally given by  

w( t + 1) = w( t ) –  

where t is epoch number and η is learning rate. 
 

2.2.6 Proposed learning rate 

     The important research work of MLFFN with BPN is to choose the learning rate [6, 8] for 

BPN to update all weight components to ensure a successful MLFFN. But it is difficult to 

choose the learning rate, because the primary reason for this is the non-monotonic nature of 

the process. In order to achieve all weight components to minimize the error function by 

online learning method, the proposed model for learning rate described as follows: 

Let N = {N1, N2, N3, …}be the set of MLFFNs corresponding to epochs, where Nt+1 is 

updated network of Nt by BPN. Let aet1 and aet2 be a sum of absolute errors of all patterns  

produced by Ni before learning and after learning respectively. But due to non-monotonic 

nature, the MLFFN may diverge. To avoid divergence, suppose  <  then  should 

not exceed  3. , otherwise MLFFN stops the learning. Based on this, with initial learning 

rate   close to zero, the proposed learning rate can be represented as  

 

otherwise or  or  satisfies the stopping rule, where e 

and f are real numbers close to zero. The proposed learning rate uses the information by 

comparing learning capability of MLFFN. During learning, it acts as an autonomous and 

adaptive learning rate to control the non monotonic of MLFFN at most.  
 

 

2.2.7 Renormalization 

The actual input patterns and output patterns are normalized for training and testing of 

MLFFN with BPN, it should be renormalized to correlate with environment and their 

corresponding observation.  The renormalized method for modeling or approximation is 
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given as: Theoretical output defined by substituting the obtained output value by trained 

MLFFN in the inverting function of normalizer. 
 

2.3 Stopping rule 

     The sequence of sum of absolute errors produced by {Ni} is non monotone. The system 

can be stopped when it performances best assessment with environments and their 

corresponding observation and with existing results on those problems. 
 

3 MLFFN model on laboratory work 

     MLFFN with BPN can learn by examples. Its mapping representation can be estimated if 

it is able to provide information on the evolution of a real system sufficiently near to those 

obtained by experiments on the real system. In this chapter, proposed model applied in the 

examples of chemical problems.  
 

3.1 Chemical industry 

     The role of chemistry in the advancement of human civilization is very significant, but this 

achievement has come at the cost of human health and the global environment. It is necessary 

to develop a mathematical model for precise data prediction in the chemical industry. 
 

3.1.1 Ionic liquid 

     Ionic liquids (ILs) are room temperature molten salts and exploited as green solvents. 

Their use as an environmentally friendly alternative to conventional solvents has gained 

much attention recently in both academic and industrial areas. 
 

3.1.2 Refractive index 

     Refractive index is an important physical quantity for analysis, because many substances 

can be easily identified by knowing its value. It is also used for theoretical purposes due to 

the fact that it gives information about the electronic configuration of the different ions and 

molecules forming the liquid. Experimental measurements of the refractive index for seven 

binary mixtures of four  ionic liquids ethyl (EMIM), butyl (BMIM), hexyl (HMIM), and octyl 

(OMIM) of the family 1-alkyl-3-methyl Imidazolium tetrafluoroborate ( CnMIM-BF4 ) with 

solvents, water or ethanol are given in [10] with respect molecular mass, refractive index and 

density of pure components and mole fraction of ionic liquid  mixture at T = 298.15K 
 

3.2    Description of proposed model  

     Proposed model uses 60 experimental data [10] with  7 input components (Table 1) which 

are molecular mass, density, and refractive index of pure component ethyl, butyl , hexyl, or 
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octyl and solvent water or ethanol and corresponding one output refractive index of binary 

mixture. In order to normalize the input components and output, normalizer uses the values a 

= 0.2 and b = 0.8 
 

3.2.1 Training set and Testing set 

            The normalized data categorized into two sets as follows: Any pair of elements in 

training set X satisfy the condition   and element 

 (xu, yu) in testing set satisfies the condition   for at 

least one element  (xv, yv) in X. The proposed model uses 66.7% (40 training data) of 

examples in the training set, and rest 33.3% (20 testing data) of examples in the testing set. 

There are 8 neurons in input layer, one neuron in output layer and 13 hidden units in the 

architecture of MLFFN. 
 

3.2.2 Weight initialization 

     The weight vectors between input layer and each neuron in hidden layer [1, 7] are 

initialized for the training set with . All weight vectors with their value r are 

given in table 3. The weight vector between hidden layer and output layer [1, 7] is initialized 

for training set (table 4) with  and r = 3.5  

 

3.2.3 Training parameter  

The parameter used for this examples are as follows:   

 Partial derivative    for bias between  hidden layer and output layer is 

comprised by the factor 0.005 

 Initial learning rate is   = 0.009 

 e = 0.00030045 and f = 0.00098108 

3.2.4 Result   

    With proposed training, MLFFN learned with the training set. The number of epochs is 

25193 and at the end of training  = 0.003079. In each epoch, all 60 renormalized data 

are compared with experimental data and existing data [5]. MLFFN stops learning when it 

produces the best result compare with result in [5]. Comparison result of each data with their 

absolute error is presented in table 2 and fig. 2 and 3. Out of 60 data, proposed model 

performs an average of 0.031% error, Gladstone – Dale model performs an average of 0.14% 

error and Newton model performs an average of 0.14% [5]. 
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Fig.2 Performance of theoretical result 

4 Research methodology  

     The algorithm of proposed model is executed through the c – Program. The results are 

compared with statistical tools and presented in table 5. Correlation coefficient shows a 

reciprocal relation between experimental result and theoretical result, whereas proximity 

shows the theoretical result close to the experimental result. 
 

5 Conclusion  

     An MLFFN is mathematical function N from the set of discrete input vectors to the 

corresponding output vectors with their relational information stored in the weights by 

minimizing an objective function under the BPN training with a considerable number of 

epochs. But the algorithm of BPN training heavily depends on the choice of learning rate. 

The proposed learning rate is an autonomous and adaptive model which uses the learning 

capability of LFFN. The performance of proposed online model applied on theoretical 

prediction of refractive index.  

 

References: 
 

1. Haykin S. Neural networks: A comprehensive foundation, IEEE Computer Society Press, 1994. 
2. Jim Y.F.Yam, Tommy W.S.Chow, “A weight initialization method for improving training speed in 

feedforward neural network”, pp. 219-232/NC/ELSEVIR, 2000 
3. McCulloch.W.S, Pitts.W, “ A logical calculus of the ideas immanent in nervous activity”,  Bulletin of 

Mathematical Biophysics, vol.5, pp 115-133, 1943. 
4. Rilo.E, Domingez-Perez.M, Vila.J, “ Easy prediction of the refractive index for binary mixtures of 

ionic liquids with water or ethanol”, Vol.47, pp.219-222, J.Chem Thermodynamics , 2012. 
5. Rumelhart.D.E, G.E.Hinton, and R.J.Williams, “Learning Internal Representations by  Error 

Propagation”, in Parallel Distributed Processing. Exploration in microstructure of    Cognition. Vol. 1:  
Foundations., MIT Press, 1986.    

6. Saeid Iranmanesh(1), M. Amin Mahdavi, “A Differential Adaptive Learning Rate Method for Back-
Propagation Neural Networks”, vol. 50, World Academy of Science, Engineering and Technology, 
2009 



JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY 
Impact Factor 2.417, ISSN: 2320-5083, Volume 3, Issue 12, January 2016 

 

151 
www.jiarm.com 

7. SanjeevKkulkarni, Gilbert Harman, “An Elementary Introduction to Statistical Learning Theory”, A 
JOHN WILEY & SONS, INC., PUBLICATION 2011 

8. Stefan Duffner, Christophe Garcia, “An Online Backpropagation Algorithm with Validation Error-
Based Adaptive Learning Rate”  pp. 249-258/LNCS 4668/Springer – Verlag Berlin Heidelberg, 2007 

9. Stelios Timotheou, “A novel weight initialization method for the random neural network”, Vol.73,  
(2009) pp.160–168, Neuro  computing , 2009. 

10. Zainddin.Z, Mahat.N,  Abu Hassan.Y, “Improving the convergence of the backpropagation algorithm 
using local adaptive techniques”, vol.1 World Academy of Science, Engineering and Technology, 2005 
 

Appendix I  
Table 1: 60 data with their input components and corresponding output 

Sl.  
No
. 

Ionic 
liquid 
with 

solvent 

7 input components 
Actual 
output Ionic liquid Solvent 

Ionic 
liquid 

Molecul
ar mass 
Kg/Mol 

Density 
kg / m3 

Refractive 
index of 

Pure 
compounds 

(Experiment) 

Molecular 
mass 

Kg/Mol 

Density 
kg / m3 

Refractive 
index of 

Pure 
compounds 

(Experiment) 

Mole 
fraction 

Refractive 
index of 
mixture 

1. 

Ethyl 
with 
water 

0.19798 1279.9 1.4123 0.01801 997.0 1.3325 0.0556 1.3565 
2. 0.19798 1279.9 1.4123 0.01801 997.0 1.3325 0.0762 1.3623 
3. 0.19798 1279.9 1.4123 0.01801 997.0 1.3325 0.0985 1.3682 
4. 0.19798 1279.9 1.4123 0.01801 997.0 1.3325 0.1902 1.3830
5. 0.19798 1279.9 1.4123 0.01801 997.0 1.3325 0.2894 1.3909
6. 0.19798 1279.9 1.4123 0.01801 997.0 1.3325 0.4011 1.3971 
7. 0.19798 1279.9 1.4123 0.01801 997.0 1.3325 0.5020 1.4013 
8. 0.19798 1279.9 1.4123 0.01801 997.0 1.3325 0.6018 1.4043 
9. 0.19798 1279.9 1.4123 0.01801 997.0 1.3325 0.6986 1.4068 
10. 0.19798 1279.9 1.4123 0.01801 997.0 1.3325 0.8086 1.4091 
11. 0.19798 1279.9 1.4123 0.01801 997.0 1.3325 0.9015 1.4108 
12. 

Butyl 
with 
water 

0.22603 1201.2 1.4212 0.01801 997.0 1.3325 0.0559 1.3650 
13. 0.22603 1201.2 1.4212 0.01801 997.0 1.3325 0.0708 1.3698 
14. 0.22603 1201.2 1.4212 0.01801 997.0 1.3325 0.0899 1.3771 
15. 0.22603 1201.2 1.4212 0.01801 997.0 1.3325 0.1745 1.3939 
16. 0.22603 1201.2 1.4212 0.01801 997.0 1.3325 0.2963 1.4021 
17. 0.22603 1201.2 1.4212 0.01801 997.0 1.3325 0.4067 1.4070 
18. 0.22603 1201.2 1.4212 0.01801 997.0 1.3325 0.5304 1.4097 
19. 0.22603 1201.2 1.4212 0.01801 997.0 1.3325 0.6326 1.4144 
20. 0.22603 1201.2 1.4212 0.01801 997.0 1.3325 0.7065 1.4166 
21. 0.22603 1201.2 1.4212 0.01801 997.0 1.3325 0.8003 1.4179 
22. 0.22603 1201.2 1.4212 0.01801 997.0 1.3325 0.9005 1.4201 
23. 

Hexyl 
with 
water 

0.25409 1145.4 1.4283 0.01801 997.0 1.3325 0.3032 1.4107 
24. 0.25409 1145.4 1.4283 0.01801 997.0 1.3325 0.4059 1.4161 
25. 0.25409 1145.4 1.4283 0.01801 997.0 1.3325 0.5058 1.4192 
26. 0.25409 1145.4 1.4283 0.01801 997.0 1.3325 0.6061 1.4218 
27. 0.25409 1145.4 1.4283 0.01801 997.0 1.3325 0.7057 1.4237 
28. 0.25409 1145.4 1.4283 0.01801 997.0 1.3325 0.8030 1.4250 
29. 0.25409 1145.4 1.4283 0.01801 997.0 1.3325 0.9002 1.4265 
30. 

Ethyl 
with 

ethanol 

0.19798 1279.9 1.4123 0.04607 785.8 1.3600 0.6087 1.4060 
31. 0.19798 1279.9 1.4123 0.04607 785.8 1.3600 0.7056 1.4079 
32. 0.19798 1279.9 1.4123 0.04607 785.8 1.3600 0.8072 1.4094 
33. 0.19798 1279.9 1.4123 0.04607 785.8 1.3600 0.9054 1.4107 
34. 

Butyl 
with 

ethanol 

0.22603 1201.2 1.4212 0.04607 785.8 1.3600 0.0986 1.3784 
35. 0.22603 1201.2 1.4212 0.04607 785.8 1.3600 0.2002 1.3914 
36. 0.22603 1201.2 1.4212 0.04607 785.8 1.3600 0.2881 1.3982 
37. 0.22603 1201.2 1.4212 0.04607 785.8 1.3600 0.3999 1.4050 
38. 0.22603 1201.2 1.4212 0.04607 785.8 1.3600 0.5024 1.4096 
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39. 0.22603 1201.2 1.4212 0.04607 785.8 1.3600 0.6082 1.4131 
40. 0.22603 1201.2 1.4212 0.04607 785.8 1.3600 0.7107 1.4158 
41. 0.22603 1201.2 1.4212 0.04607 785.8 1.3600 0.8040 1.4175 
42. 0.22603 1201.2 1.4212 0.04607 785.8 1.3600 0.9059 1.4196 
43. 

Hexyl 
with 

ethanol 

0.25409 1145.4 1.4283 0.04607 785.8 1.3600 0.0980 1.3833 
44. 0.25409 1145.4 1.4283 0.04607 785.8 1.3600 0.1998 1.3959 
45. 0.25409 1145.4 1.4283 0.04607 785.8 1.3600 0.3000 1.4062 
46. 0.25409 1145.4 1.4283 0.04607 785.8 1.3600 0.3991 1.4123 
47. 0.25409 1145.4 1.4283 0.04607 785.8 1.3600 0.5079 1.4157 
48. 0.25409 1145.4 1.4283 0.04607 785.8 1.3600 0.6123 1.4210
49. 0.25409 1145.4 1.4283 0.04607 785.8 1.3600 0.7020 1.4222
50. 0.25409 1145.4 1.4283 0.04607 785.8 1.3600 0.8030 1.4243 
51. 0.25409 1145.4 1.4283 0.04607 785.8 1.3600 0.8596 1.4258 
52. 

Octyl 
with 

ethanol 

0.28214 1104.2 1.4330 0.04607 785.8 1.3600 0.2034 1.4002 
53. 0.28214 1104.2 1.4330 0.04607 785.8 1.3600 0.2021 1.4000 
54. 0.28214 1104.2 1.4330 0.04607 785.8 1.3600 0.3000 1.4095
55. 0.28214 1104.2 1.4330 0.04607 785.8 1.3600 0.4096 1.4161
56. 0.28214 1104.2 1.4330 0.04607 785.8 1.3600 0.5125 1.4208 
57. 0.28214 1104.2 1.4330 0.04607 785.8 1.3600 0.6156 1.4245 
58. 0.28214 1104.2 1.4330 0.04607 785.8 1.3600 0.7207 1.4278 
59. 0.28214 1104.2 1.4330 0.04607 785.8 1.3600 0.8150 1.4298 
60. 0.28214 1104.2 1.4330 0.04607 785.8 1.3600 0.9014 1.4314

 
Table 2: 60 experimental output and proposed output and existing output with their absolute error 

Sl. No. 
Experimental  

output 
Proposed 

output 
Absolute 

error 

Gladstone 
– Dale 
model 
output 

Absolute 
error 

Newton 
model 
output 

Absolute 
error 

1 1.3565 1.356336 0.000164 1.3592 0.0027 1.3598 0.0033 

2 1.3623 1.361924 0.000376 1.3655 0.0032 1.3661 0.0038 

3 1.3682 1.368305 0.000105 1.3711 0.0029 1.3717 0.0035 

4 1.383 1.384776 0.001776 1.3858 0.0028 1.3863 0.0033 

5 1.3909 1.391339 0.000439 1.3945 0.0036 1.3949 0.004 

6 1.3971 1.396292 0.000808 1.4005 0.0034 1.4007 0.0036 

7 1.4013 1.400453 0.000847 1.404 0.0027 1.4042 0.0029 

8 1.4043 1.40384 0.00046 1.4066 0.0023 1.4067 0.0024 

9 1.4068 1.406238 0.000562 1.4085 0.0017 1.4086 0.0018 

10 1.4091 1.408466 0.000634 1.4102 0.0011 1.4102 0.0011 

11 1.4108 1.410387 0.000413 1.4113 0.0005 1.4113 0.0005 

12 1.365 1.36498 0.00002 1.3663 0.0013 1.367 0.002 

13 1.3698 1.370522 0.000722 1.3717 0.0019 1.3725 0.0027 

14 1.3771 1.377179 0.000079 1.3775 0.0004 1.3782 0.0011 

15 1.3939 1.393783 0.000117 1.3935 0.0004 1.3941 0.0002 

16 1.4021 1.40169 0.00041 1.4047 0.0026 1.4052 0.0031 

17 1.407 1.406556 0.000444 1.4103 0.0033 1.4106 0.0036 

18 1.4097 1.41093 0.00123 1.4143 0.0046 1.4145 0.0048 

19 1.4144 1.413938 0.000462 1.4165 0.0021 1.4167 0.0023 

20 1.4166 1.415884 0.000716 1.4178 0.0012 1.4179 0.0013 

21 1.4179 1.418014 0.000114 1.4191 0.0012 1.4192 0.0013 

22 1.4201 1.419788 0.000312 1.4203 0.0002 1.4203 0.0002 

23 1.4107 1.41092 0.00022 1.4132 0.0025 1.4136 0.0029 
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24 1.4161 1.415768 0.000332 1.4181 0.002 1.4184 0.0023 

25 1.4192 1.419313 0.000113 1.4212 0.002 1.4215 0.0023 

26 1.4218 1.421924 0.000124 1.4235 0.0017 1.4236 0.0018 

27 1.4237 1.423835 0.000135 1.4252 0.0015 1.4253 0.0016 

28 1.425 1.4253 0.0003 1.4264 0.0014 1.4265 0.0015 

29 1.4265 1.426565 0.000065 1.4274 0.0009 1.4275 0.001 

30 1.406 1.406045 0.000045 1.4021 0.0039 1.4022 0.0038 

31 1.4079 1.408392 0.000492 1.4052 0.0027 1.4053 0.0026 

32 1.4094 1.40978 0.00038 1.408 0.0014 1.408 0.0014 

33 1.4107 1.410681 0.000019 1.4103 0.0004 1.4103 0.0004 

34 1.3784 1.378173 0.000227 1.3759 0.0025 1.3762 0.0022 

35 1.3914 1.390938 0.000462 1.3873 0.0041 1.3876 0.0038 

36 1.3982 1.398667 0.000467 1.3946 0.0036 1.3949 0.0033 

37 1.405 1.40613 0.00113 1.4017 0.0033 1.402 0.003 

38 1.4096 1.410572 0.000972 1.4068 0.0028 1.407 0.0026 

39 1.4131 1.413499 0.000399 1.411 0.0021 1.4112 0.0019 

40 1.4158 1.415639 0.000161 1.4143 0.0015 1.4144 0.0014 

41 1.4175 1.417513 0.000013 1.4169 0.0006 1.417 0.0005 

42 1.4196 1.419722 0.000122 1.4193 0.0003 1.4193 0.0003 

43 1.3833 1.383721 0.000421 1.3799 0.0034 1.3802 0.0031 

44 1.3959 1.397149 0.001249 1.3932 0.0027 1.3936 0.0023 

45 1.4062 1.405496 0.000704 1.4022 0.004 1.4026 0.0036 

46 1.4123 1.411253 0.001047 1.4089 0.0034 1.4092 0.0031 

47 1.4157 1.415677 0.000023 1.4144 0.0013 1.4146 0.0011 

48 1.421 1.419067 0.001933 1.4185 0.0025 1.4187 0.0023 

49 1.4222 1.421711 0.000489 1.4214 0.0008 1.4216 0.0006 

50 1.4243 1.4244 0.0001 1.4241 0.0002 1.4242 0.0001 

51 1.4258 1.425719 0.000081 1.4255 0.0003 1.4255 0.0003 

52 1.4002 1.400305 0.000105 1.3984 0.0018 1.3989 0.0013 

53 1.4 1.400165 0.000165 1.3983 0.0017 1.3988 0.0012 

54 1.4095 1.409102 0.000398 1.4075 0.002 1.408 0.0015 

55 1.4161 1.41622 0.00012 1.4149 0.0012 1.4152 0.0009 

56 1.4208 1.421084 0.000284 1.4199 0.0009 1.4202 0.0006 

57 1.4245 1.424783 0.000283 1.4239 0.0006 1.4241 0.0004 

58 1.4278 1.427605 0.000195 1.427 0.0008 1.4272 0.0006 

59 1.4298 1.42951 0.00029 1.4294 0.0004 1.4295 0.0003 

60 1.4314 1.430897 0.000503 1.4312 0.0002 1.4313 0.0001 
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Appendix II 

Table 3: Initial weight components between input layer and hidden layer 

Sl. No r Weight between input layer and 12 hidden neurons 
1 3.5 0.721673 0.703157 0.069888 0.905123 0.215487 -1.00255 1.504659 -0.56987 
2 3.5 1.970683 1.990196 0.352709 -0.64378 -1.03255 2.012549 -0.54687 1.10257 
3 3.3 0.25978 -1.56488 2.125487 0.021549 1.716999 1.18757 1.929468 1.067776
4 3.0 -1.29876 1.98764 1.000458 0.78954 -1.19736 -1.70827 -0.05028 0.293325 
5 4.01 -2.34408 -0.41352 -1.77843 -0.79517 -0.25987 1.088975 -0.87594 -0.45214 
6 4.0 -1.92774 -0.09176 1.898243 0.75373 1.875462 -0.02155 1.115487 0.55487 
7 3.8 -1.36597 0.365847 1.987451 -2.00146 -0.61938 -0.0324 -0.30497 -0.73582 
8 3.8 0.598745 -2.15488 1.44874 -0.11549 -1.03571 -1.96296 -0.30497 -0.73582
9 3.6 -1.22549 0.554875 -0.21549 0.425187 -1.80745 -1.25851 -0.24404 0.87402
10 3.61 -2.22378 -0.61499 0.887248 1.648471 0.986549 -1.20155 1.541021 -0.22254 
11 3.21 -2.0966 0.155714 1.580071 0.226749 0.986549 -0.02549 1.54872 -0.82546 
12 3.2 1.65483 -0.63533 1.098754 -1.1147 -1.26393 -0.48781 -0.6825 -0.5477 

 
Table 4: Initial weight components between hidden layer and output layer 

r Weight between 12 hidden layers and output neurons 
3.5 -0.564875 -0.1125487 -1.265487 -1.021548 -0.2225487 -0.710530265 -2.1185117585166 -0.235987 1.225487 2.014587 1.587461 

 
Appendix III 

Table 5: Statistical comparison between experimental and theoretical results 

Model 
Correlation 

coefficient with 
experimental result 

Proximity 
(Euclidean distance 
with experimental 

result) 
Proposed Output  0.999 0.05 
Gladstone Output 0.992 0.17 
Newton Output 0.992 0.18 
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Fig. 3 shows that the proposed result plotted by the symbol * close to experimental result 

plotted by the symbol □ 

compare with Gladsone – Dale method potted by the symbol ● and Netwon method plotted 

by the symbol ◊ 
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Appendix IV 

Algorithm for Mathematical approach to design an on line multilayer feed forward neural 

network 

Step.1 Categorize normalized data into training set and testing set 

Step2. Initialize all weight components using training set 

Step3. Present the experimental data and existing model 

Setp4. Perform MLFFN with an element from training set and go to step 6 or if all training 

elements are presented,    go to step 5 

Step5. Compare renormalized MLFFN’s output with experimental output and existing 

output. If MLFFN perform well than existing   result, MLFFN stops the learning . 

Otherwise, go to step 4. 

Step6. Train MLFFN with BPN along with proposed learning rate and go to Step4. 

End.  
 


