NEW TYPES OF CONTINUOUS FUNCTIONS IN IDEAL TOPOLOGICAL SPACES

ASAAD SHAKIR HAMEED AL-KHAFAJI*

*Assistant Lecturer at the Iraqi Ministry of Education-Directorate General of Education Thi-Qar

ABSTRACT

An ideal I is a nonempty collection of subsets of a topological space (X, τ) closed under heredity and finite additivity. The main objective of this paper is to introduce new types of continuous functions in ideal topological spaces (X, τ, I) , and obtain several characterizations and some properties of these functions. Also, we investigate its relationship with other types of functions.

KEYWORDS: I-open set, α -I-open set, α -I-continuous function, semi-I-continuous function.

1. INTRODUCTION

The notion of α -open sets was first introduced and investigated by Njastad [1]. By using α -open sets, Mashhour et al. [2] defined and studied α -continuity and α -openness in topological spaces. Quite recently, Hatir and Noiri [3] have introduced the notion of α -Icontinuous functions and used it to obtain a decomposition of continuity. In this paper, we obtain several characterizations and study of α -I-continuous functions. In 2000 Navalagi [4] Introduced the concept of semi- α -open sets in topological spaces. Through this concept we introduce new concept called semi- α -I-open sets in ideal topological spaces. Moreover, we introduce the concept semi- α -I-continuous functions. Throughout this paper Cl (A) and Int (A) denote the closure and the interior of A, respectively. Let (X, τ) be a topological space and I an ideal of subsets of X. An ideal is defined as a nonempty collection I of subsets of X satisfying the following two conditions: (1) If $A \in I$ and $B \subset A$, then $B \in I$; (2) If $A \in I$ and $B \in I$, then A $\bigcup B \in I$. An ideal topological space is a topological space (X, τ) with an ideal I on X and is denoted by (X, τ , I). For a subset A \subset X, A* (I) = {x \in X | U \cap A \notin I for each neighbourhood U of x} is called the local function of A with respect to I and τ [5]. We simply write A^* instead of $A^*(I)$ in case there is no chance for confusion. X^* is often a proper subset of X. The hypothesis $X = X^*$ [6] is equivalent to the hypothesis $\tau \cap I = \emptyset$ [7]. For every ideal topological space (X, τ , I), there exists a topology $\tau^*(I)$, finer than τ . generated by $\beta(I,\tau) = \{U \mid I : U \in \tau \text{ and } I \in I\}$, but in general $\beta(I,\tau)$ is not always a topology [8]. Additionally, Cl* (A) = A \cap A* defines a Kuratowski closure operator for τ * (I).

2. PRELIMINARIES

First we recall some definitions used in the sequel.

Definition 2.1:

A subset A of an topological space (X, τ) is said to be:

I. α -open set [1] if $A \subseteq int(cl(int(A)))$.

II. semi- α -open set [4] if $U \subseteq A \subseteq cl(U)$ and U is α -open in (X, τ) .

III. semi-open set [9] if $A \subseteq cl(int(A))$.

Complement of the above mentioned open sets are called their respective closed sets.

Definition 2.2:

A subset A of an ideal topological space (X, τ , I) is said to be: (1) α -I-open set [3] if A \subseteq Int (Cl*(Int (A)))

(2) semi-I-open set [3] if $A \subseteq Cl^*$ (Int (A))

(3) I-open set [10] if $A \subseteq Int(A^*)$

(4) semi- α -I-open set if $U \subseteq A \subseteq cl^*(U)$ and U is α -I-open set.

The family of all α -I-open (resp. semi-I-open, I-open, semi- α -I-open) is denoted by α IO (X),(resp. SIO(X),IO(X),S α IO(X).

Proposition 2.1

- i) Every α -I-open sets is α -open sets.
- (ii) Every semi-I-open set is semi-open set.

Proof:

(i) Let A be an α -I-open set. Then we have

 $A \subseteq Int (Cl^{*}(Int (A))) = Int((Int(A))^{*} \bigcup Int(A))$

 $\subseteq Int(Cl(Int(A)) \ \bigcup Int(A)) \subseteq Int(Cl(Int(A))).$

This show that A is α -open set .

(ii) Let A be a semi-I-open set. Then we have $A \subseteq Cl^*$ (Int (A)) \subseteq (Int(A))* \bigcup Int (A) \subseteq Cl(Int(A)) \bigcup Int(A) = Cl(Int(A)). This show that A is semi-open set.

Proposition 2.2: Every open set of an ideal topological space is α -I-open set.

Proof:

Let A be any open set. Then we have

 $A=Int(A) \subseteq Int((Int(A))^* \bigcup Int(A))=Int(Cl^*(Int(A))).$

This show that A is α -I-open set .

The following example shows that the converse of the above proposition is not true.

Example 2.1:

Consider the ideal topological space (X, τ , I), where X={1,2,3,4}

with $\tau = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}\}$ and $I = \{\emptyset, \{2\}\}$. In this ideal space the set $A = \{1,2,4\}$

is α -I-open set but not open set because of $A \notin \tau$.

Proposition 2.3: Every α -I-open set of an ideal topological space is semi- α -I-open set.

Proof: Let A be any α -I-open set.

Since $A \subseteq A$ and $A \subseteq Cl^*(A) \Rightarrow A \subseteq A \subseteq Cl^*(A)$

This show that A is semi- α -I-open set.

The following example shows that the converse of the above proposition is not true.

Example 2.2:

Consider the ideal topological space (X, τ , I), where X={a,b,c,d}

with $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ and I= $\{\emptyset, \{c\}\}$. In this ideal space the set A= $\{b, c, d\}$ is semi- α -I-open set but not α -I-open set

because :

 $A = \{b, c, d\} \implies int \{b, c, d\} = \{b\}, \{b\}^* = \{b, c, d\}$

 $cl^{*}{b}={b} \cup {b}^{*}={b} \cup {b,c,d}={b,c,d}$

 $cl^{*}{b}={b,c,d} \implies int (cl^{*}{b,c,d})={b}$

 \Rightarrow A $\not\subset$ int(cl*(int(A)))={b}

 \Rightarrow A is not α -I-open set.

Remark 2.1:

It is clear that, I-open set and open set are independent concepts.

Example 2.3:

Let X={a,b,c,d} with a topology $\tau = \{\emptyset, X, \{c\}, \{a,b\}, \{a,b,c\}\}$ and I={ $\emptyset, \{a\}$ }. Then {b,c,d} $\in IO(X, \tau)$ but {b,c,d} $\notin \tau$.

Example 2.4:

Let X be as in Example 2.3, $\tau = \{\emptyset, X, \{d\}, \{a,c\}, \{a,c,d\}\}$

and I={ \emptyset , {c}, {d}, {c,d}}. It is clear that {a,c,d} $\in \tau$, but {b,c,d} $\notin IO(X, \tau)$.

Remark 2.2:

The intersection of two I-open sets need not be I-open as is illustrated by the following example.

Example 2.5:

Let X={a,b,c,d}, $\tau = \{\emptyset, X, \{a,b\}, \{a,b,c\}\}$ and I={ \emptyset }.

Then $\{a,c\}, \{b,c,d\} \in IO(X, \tau)$, but $\{a,c\} \cap \{b,c,d\} \notin IO(X, \tau)$.

Proposition 2.4:Let (X, τ, I) be an ideal topological space. If $I = \{\emptyset\}$

(resp. P(X)), then $\alpha IO(X) = \tau_{\alpha}$ (resp. $\tau = \alpha IO(X)$)

Proof:

(1) Let I = $\{\emptyset\}$. Then A* = Cl (A) and hence Cl*(A) = A \bigcup A* =Cl(A)

for every subset A of X. Therefore, Int (Cl*(Int(A)))=Int(Cl(Int(A))) and hence $\alpha IO(X) = \tau_{\alpha}$.

(2) Let I = P(X), then A* = \emptyset , and Cl*(A) = A for every subset A of X. Therefore, Int (Cl*(Int(A)))=Int(Int(A))=Int(A) and hence $\tau = \alpha IO(X)$.

3. I-continuous function, α -I-continuous function and semi- α -I-continuous function

Definition 3.1[10]: A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be I-continuous if for every $V \in \sigma$, $f^{-1}(V) \in IO(X, \tau)$.

The following two examples show that the concept of continuity and I-continuity are independent.

Example 3.1:

Let $X = Y = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}$, $I = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}$ on X and $\sigma = \{Y, \emptyset, \{a\}, \{c\}, \{a, c\}\}$. Then the identity function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ is continuous but not I-continuous because $\{c\} \in \sigma$, but $f^{-1}(\{c\}) = \{c\} \notin IO(X)$.

Example 3.2:

Let $X = Y = \{a,b,c\}, \tau = \sigma = \{X,\emptyset,\{a\}\}$ and $I = \{\emptyset,\{b\}\}$ on X. Then $f : (X,\tau,I) \rightarrow (Y,\sigma)$ which is defined by: f (a) = a = f (b) and f (c) = c is I-continuous but not continuous. **Definition 3.2 [3]:** A function $f : (X, \tau, I) \to (Y, \sigma)$ is called α -I-continuous if the inverse image of each open set of Y is α -I-open.

Definition 3.3: Let N be a subset of a space (X,τ, I) and let $x \in X$. Then N is called α -I-neighborhood of x, if there exists a α -I-open set U containing x such that $U \subseteq N$.

Definition 3.4: A function $f : (X, \tau, I) \to (Y, \sigma)$ is called semi- α -I-continuous if the inverse image of each open set of Y is semi- α -I-open.

Theorem 3.1: For a function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ the following are equivalent:

(i) f is α -I-continuous function.

(ii) For each $x \in$ and each $V \in \sigma$ containing f(x), there exists

 $W \in \alpha IO(X)$ containing x such that $f(W) \subset V$.

(iii) For each $x \in$ and each $V \in \sigma$ containing f(x), $(f^{-1}(V))^*$ is a α -I-neighborhood of x.

Proof: (i) \Rightarrow (ii) : Since $V \in \sigma$ containing f (x), then by (i), $f^{-1}(V) \in \alpha IO(X)$, by putting $W = f^{-1}(V)$ which containing x. Therefore $f(W) \subset v$ (ii) \Rightarrow (iii): Since $V \in \sigma$ containing f (x), then by (ii), there exists $W \in \alpha IO(X)$ containing x such that $f(W) \subset V$. So, $x \in W \subseteq int(W^*) \subseteq$ $int(f^{-1}(V))^* \subseteq (f^{-1}(V))^*$. Hence $(f^{-1}(V))^*$ is a neighborhood of x (iii) \Rightarrow (i): Obvious

Remark 3.1:

Every continuous function is α -I-continuous function, so it is semi- α -I-continuous function. But the converse is not true in general.

Example 3.3:

Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}\}, I = \{\emptyset, \{c\}\}, Y = \{x, y, z\}, \sigma = \{\emptyset, Y, \{x\}\}, Then f : (X, \tau, I) \rightarrow (Y, \sigma) which is defined by:$ f (a) = f (b)=x, f (c) = y and f (d) = z

is α -I-continuous but not continuous, because $\{x\} \in \sigma$, but $f^{-1}(\{x\}) = \{a,b\} \notin \tau$.

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 2.417, ISSN: 2320-5083, Volume 3, Issue 12, January 2016

Also, f is semi- α -I-continuous function but not continuous, because $\{x\} \in \sigma$, but $f^{-1}(\{x\})$

={a,b} $\notin \tau$.

Remark 3.2:

Every α -I-continuous function is semi- α -I-continuous function. But the converse is not true in general.

Example 3.4:

Let X = {1,2,3}, $\tau = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}\}, I = \{\emptyset, \{3\}\}$

Then $f : X \rightarrow X$ which is defined by:

f(1) = 1, f(2) = f(3) = 2 is semi- α -I-continuous but not α -I-continuous. because $\{2\} \in \tau$, but $f^{-1}(\{2\}) = \{2,3\} \notin \alpha IO(X)$.

Through the above remarks we get to the diagram following

Remark3.3:

Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be two functions, then:

If f and g are α -I-continuous, then $g \circ f : X \longrightarrow Z$ need not to be

 α -I-continuous as the following example shows:

Example 3.5 :

Let X = {1, 2, 3, 4}, $\tau_X = \{\emptyset, X, \{3\}, \{1, 3\}, \{1, 2, 3\}\}, I = \{\emptyset, \{2\}\}$ Let Y = {a, b, c}, $\tau_Y = \{\emptyset, Y, \{c\}\},$ Define $f : X \longrightarrow Y$ by f(1) = f(2) = a, f(3) = f(4) = bDefine $g : Y \longrightarrow X$ by g(a) = g(c) = 3, g(b) = 1 It is easily seen that f and g are α -I-continuous, but $g \circ f : X \longrightarrow X$, where $g \circ f(1) = g \circ f(2) = 3$, $g \circ f(3) = g \circ f(4) = 1$, hence $g \circ f$ is not α -I-continuous since {3} is open set in X, but $(g \circ f)^{-1}$ {3} = {1, 2} is not α -I-open set in X.

Proposition 3.1: Let $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ be α -I-continuous function and $g : (Y, \sigma, J) \rightarrow (Z, \mu)$ be continuous. Then $g \circ f$ is α -I-continuous function.

Proof:

Let $W \in \mu$. Then $(g \circ f)^{-1}(W) = (f^{-1} \circ g^{-1})(W) = f^{-1}(g^{-1}(W))$. Since $g^{-1}(W)$ is open as g is continuous. Now since f is α -I-continuous function. So $f^{-1}(g^{-1}(W))$ is α -I-open set. Hence $g \circ f$ is α -I-continuous function.

4. α*-I-continuous function and semi-α*-I-continuous function

Definition 4.1: A function $f : (X, \tau, I) \to (Y, \sigma)$ is called α^* -continuous if the inverse image of each α -open set of Y is α -open.

Remark4.1:

Every α^* -continuous function is α -continuous function but the converse is not true in general as the following examples show.

Example 4.1:

Let X = {a, b, c, d}, $\tau_X = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ $\tau_{\alpha(X)} = \tau_{(X)} \cup \{\{a, b, d\}\}$ Define $f : X \longrightarrow X$ by f(a) = a, f(b) = f(c) = c, f(d) = d.

It is easily seen that f is α -continuous but it is not α^* -continuous since $\{a, b, d\} \in \tau_{\alpha(X)}$ but $f^{-1}(\{a, b, d\}) = \{a, d\} \notin \tau_{\alpha(X)}$

Hence f is α -continuous but it is not α^* -continuous.

Definition 4.2: A function $f : (X, \tau, I) \to (Y, \sigma)$ is called α^* - I-continuous if the inverse image of each α -I-open set of Y is α -I-open.

Definition 4.3: A function $f : (X, \tau, I) \to (Y, \sigma)$ is called semi- α^* - I-continuous if the inverse image of each semi- α -I-open set of Y is semi- α -I-open.

Remark 4.2:

The concepts of α^* -I-continuity and semi- α^* -I-continuity are independent as the following examples show:

www.jiarm.com

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 2.417, ISSN: 2320-5083, Volume 3, Issue 12, January 2016

Example 4.2:

Let X = {a, b, c, d}, τ_{X} = {X, \emptyset , {a}, {b}, {a, b}, {a, b, c}},I={ \emptyset ,{c}},

Let $Y = \{a, b, c\}, \tau_Y = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}\},\$

Define $f: X \longrightarrow Y$ by f(a) = f(d) = b, f(c) = c, f(b) = a

It is easily seen that is semi- α^* -I-continuous but it is not

 α^* -I-continuous, since {b} is semi- α -I-open set in Y, but $f^{-1}(\{b\}) = \{a, d\}$ is not semi- α -I-

open set in X.

Example 4.3:

Let X = {a, b, c, d}, τ_{X} = {X, \emptyset , {a}, {b}, {a, b}, {a, b, c}}, I={ \emptyset , {c}},

Define $f : X \longrightarrow X$ by f(a) = f(b) = b, f(c) = d and f(d) = c

It is easily seen that f is α^* -I-continuous function but it is not

Semi- α *-I-continuous function, {a, c} is semi- α -I-open set but $f^{-1}(\{a, c\}) = \{d\}$ is not semi- α -I-open set in X.

References

- 1) D. Jankovi'c and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295-310.
- 2) E. Hatir and T. Noiri, On decomposition of continuity via idealization, Acta Math. Hungar., 96 (4) (2002), 341-349.
- 3) E. Hayashi, Topologies defined by local properties, Math. Ann., 156 (1964), 205–215.
- 4) G. B. Navalagi, "Definition Bank in General Topology", (2000).
- 5) K. Kuratowski, Topology, Vol. 1 (transl.), Academic Press (New York, 1966).
- M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, On I-open sets and Icontinuous functions, Kyungpook Math. J., 32(1992), 21-30.
- 7) N.Levine, semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70, 1963 (36-41).
- 8) O. Njastad, on some classes of nearly open sets.pacific, J.Math. 1965, 15(961-970).
- 9) P. Samuels, A topology formed from a given topology and ideal, J. London Math. Soc.(2), 10 (1975), 409-416.
- 10) S. Mashhour, I. N. Hasanein and S.N. El-Deeb, α-continuous and α-open mappings, Acta Math. Hungar., 41(1983),213-218.